RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2008 Number 12, Pages 3–6 (Mi ivm1457)

This article is cited in 6 papers

Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order

E. I. Abduragimov

Dagestan State University, Makhachkala

Abstract: In the ball $S=\{x\in R^n:|x|<1\}$ ($n\ge3$) with the boundary $\Gamma$ we consider the Dirichlet problem
\begin{gather*} \Delta u+|x|^m|u|^p=0, \quad x\in S, \\ u_\Gamma=0, \end{gather*}
where $m\ge0$, $p>1$ are constants. We prove that the problem has a unique positive radially symmetric solution.

Keywords: positive solution, radially symmetric solution, Dirichlet problem, differential equation.

UDC: 517.956

Received: 10.07.2006


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, 52:12, 1–3

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025