RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2009 Number 6, Pages 60–64 (Mi ivm1464)

This article is cited in 4 papers

Brief communications

Mappings connected with the gradient of conformal radius

L. A. Aksent'ev, A. N. Akhmetova

Chair of Mathematical Analysis, Kazan State University, Kazan, Russia

Abstract: In this paper we prove the following conformality criterion for the gradient of conformal radius $\nabla R(D,z)$ of a convex domain $D$: the boundary $\partial D$ has to be a circumference. We calculate coefficients $K(r)$ for $K(r)$-quasiconformal mappings $\nabla R(D(r),z)$, $D(r)\subset D$, $0<r<1$, and complete the results obtained by F. G. Avkhadiev and K.-J. Wirths for the structure of boundary elements of quasiconformal mappings of a domain $D$.

Keywords: conformal radius, gradient of conformal radius, $K$-quasiconformal mapping, Beltrami equation.

UDC: 517.546

Received: 18.06.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:6, 49–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024