RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2008 Number 8, Pages 3–15 (Mi ivm1675)

This article is cited in 42 papers

Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations

S. S. Platonov, E. S. Belkina

Petrozavodsk State University

Abstract: In a Hilbert space $L_{2,\alpha}:=L_2(\mathbb{R},|x|^{2\alpha+1}dx)$, $\alpha>-1/2$, we study the generalized Dunkl translations constructed by the Dunkl differential-difference operator. Using the generalized Dunkl translations, we define generalized modulus of smoothness in the space $L_{2,\alpha}$. On the base of the Dunkl operator we define Sobolev-type spaces and $K$-functionals. The main result of the paper is the proof of the equivalence theorem for a $K$-functional and a modulus of smoothness.

Keywords: Dunkl operator, generalized Dunkl translation, $K$-functional, modulus of smoothness.

UDC: 517.518

Received: 26.07.2006


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, 52:8, 1–11

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024