RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2008 Number 9, Pages 27–39 (Mi ivm1709)

Direct methods for solving singular integral equations with nonnegative indices

V. I. Kas'yanov

Almet'evsk State Petroleum Institute, Almet'evsk, Russia

Abstract: In this paper we consider a complete singular integral equation with the Cauchy kernel on the real axis and a bisingular integral equation on a plane with a degenerate characteristic part. We theoretically substantiate the polynomial methods of moments and collocation in the case of nonnegative indices. We also prove the convergence of the method of mechanical quadratures for the corresponding one-dimensional equation.

Keywords: singular integral on the real axis, linear one-dimensional and two-dimensional equations, direct method, convergence of a method.

UDC: 517.544

Received: 02.06.2006


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, 52:8, 23–34

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025