RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2008 Number 9, Pages 59–68 (Mi ivm1721)

This article is cited in 1 paper

Definition of a boundary in the local Charzyński-Tammi conjecture

D. V. Prokhorov, V. G. Gordienko

Saratov State University

Abstract: According to the Charzynski–Tammi conjecture, the symmetrized Pick function is extremal in the problem on the estimate for the $n$th Taylor coefficient in the class of holomorphic univalent functions close to the identical one. In this paper we find the exact value of $M_4$ such that the symmetrized Pick function is locally extremal in the problem on the estimate for the 4th Taylor coefficient in the class of holomorphic normed univalent functions, whose module is bounded by $M_4$.

Keywords: Charzynski–Tammi conjecture, univalent function, bounded function, extremal problem, Pick function.

UDC: 517.546

Received: 14.07.2006


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, 52:9, 51–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025