RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2009 Number 9, Pages 3–12 (Mi ivm3061)

Complex powers of degenerating differential operators connected with the Klein–Gordon–Fock operator

D. V. Vozhzhov, V. A. Nogin

Chair of Differential and Integral Equations, Southern Federal University, Rostov-on-Don, Russia

Abstract: We develop a theory of complex powers of the generalized Klein–Gordon–Fock operator
$$ m^2-\square-i\lambda\frac{\partial^2}{\partial x^2_1},\qquad\lambda>0. $$
The negative powers of this operator are realized as potential-type integrals with nonstandard metrics, while positive powers inverse to negative ones are realized as approximative inverse operators.

Keywords: potential-type operator, symbol, inverse operator, approximative inverse operator.

UDC: 517.983

Received: 28.05.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:9, 1–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025