RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2009 Number 9, Pages 25–35 (Mi ivm3063)

The absolutely representing families in certain classes of locally convex spaces

Yu. F. Korobeinikab

a Chair of Mathematical Analysis, Southern Federal University, Rostov-on-Don, Russia
b Southern-Russia Mathematical Institute of Vladikavkaz Scientific Center, Russian Academy of Sciences, Vladikavkaz, Russia

Abstract: A collection $X_\Lambda=\{x_\alpha\colon\alpha\in\Lambda\}$ of nonzero elements of a complete separable locally convex space $H$ over a field of scalars $\Psi$ ($\Psi=\mathbb R$ or $\mathbb C$), where $\Lambda$ is a certain set of indices, is said to be an absolutely representing family (ARF) in $H$ if $\forall x\in H$ one can find a family in the form $\{c_\alpha x_\alpha\colon c_\alpha\in\Psi$, $\alpha\in\Lambda\}$, that is absolutely summable to $x$ in $H$. In this paper we study certain properties of ARFs in the Fréchet spaces and strong adjoints to reflexive Fréchet spaces. We pay the most attention to obtaining the criteria that allow one to conclude that a given collection $X_\Lambda$ is an ARF in $H$.

Keywords: absolutely representing family, dual theory, locally convex spaces, Fréchet spaces.

UDC: 517.982

Received: 05.06.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:9, 20–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025