Abstract:
Let
$$
\Pi _N^{(r)}(x)=\sum_{k=N-r+1}^Na_k^0x^k+\sum_{j=0}^{N-r}a_jx^j \quad(a_N^{(0)}>0)
$$
be an algebraic polynomial with fixed coefficients $a_k^{(0)}$. For the $l$th derivative of the mentioned polynomial we solve the following extremal problems: in a loaded Jacobi space with the inner product
$$
\langle f,g\rangle=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}\int_{-1}^1fg(1-x)^\alpha(1+x)^\beta\,dx+Lf(1)g(1)+Mf(-1)g(-1),
$$ $(L,M\ge0)$,
find $\inf\langle D^l[\Pi_N^{(r)}(x)],D^l[\Pi_N^{(r)}(x)]\rangle$ ($D=\frac d{dx}$, $0\le l\le N-r$)
and calculate extremal polynomials.