RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 2, Pages 53–65 (Mi ivm6699)

This article is cited in 2 papers

Some extremal problems for algebraic polynomials in loaded spaces

B. P. Osilenker

Chair of Higher Mathematics, Moscow State Building University, Moscow, Russia

Abstract: Let
$$ \Pi _N^{(r)}(x)=\sum_{k=N-r+1}^Na_k^0x^k+\sum_{j=0}^{N-r}a_jx^j \quad(a_N^{(0)}>0) $$
be an algebraic polynomial with fixed coefficients $a_k^{(0)}$. For the $l$th derivative of the mentioned polynomial we solve the following extremal problems: in a loaded Jacobi space with the inner product
$$ \langle f,g\rangle=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}\int_{-1}^1fg(1-x)^\alpha(1+x)^\beta\,dx+Lf(1)g(1)+Mf(-1)g(-1), $$
$(L,M\ge0)$, find $\inf\langle D^l[\Pi_N^{(r)}(x)],D^l[\Pi_N^{(r)}(x)]\rangle$ ($D=\frac d{dx}$, $0\le l\le N-r$) and calculate extremal polynomials.

Keywords: extremal problem, loaded spaces, loaded orthogonal polynomials, algebraic polynomials, classical Jacobi polynomials.

UDC: 517.538

Received: 29.10.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:2, 46–56

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024