RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 2, Pages 97–100 (Mi ivm6703)

Brief communications

On the approximation of entire functions by trigonometric polynomials

E. G. Kir'yatskii

Chair of Mathematical Modelling, Vilnius Technical University, Vilnuis, Lithuania

Abstract: Let a set $B$ have the following properties: if $z\in B$, then $z\pm2\pi\in B$ and the intersection of $B$ and the strip $0\le\operatorname{Re}x\le\pi$ is a closed and bounded set.
In this paper we study the approximation of a continuous on $B$ and $2\pi$-periodic function $f(z)$ by trigonometric polynomials $T_n(z)$. We establish the necessary and sufficient conditions for the function $f(z)$ to be entire and specify a formula for calculating its order. In addition, we describe some metric properties of periodic sets in a plane.

Keywords: trigonometric polynomials, entire function, order of entire function, Fekete numbers.

UDC: 517.518

Received: 25.07.2008
Revised: 05.04.2009


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:2, 84–86

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024