RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 3, Pages 9–14 (Mi ivm6706)

This article is cited in 7 papers

To the theory of operator monotone and operator convex functions

Dinh Trung Hoa, O. E. Tikhonov

Research Institute of Mathematics and Mechanics, Kazan State University, Kazan, Russia

Abstract: We prove that a real function is operator monotone (operator convex) if the corresponding monotonicity (convexity) inequalities are valid for some normal state on the algebra of all bounded operators in an infinite-dimensional Hilbert space. We describe the class of convex operator functions with respect to a given von Neumann algebra in dependence of types of direct summands in this algebra. We prove that if a function from $\mathbb R^+$ into $\mathbb R^+$ is monotone with respect to a von Neumann algebra, then it is also operator monotone in the sense of the natural order on the set of positive self-adjoint operators affiliated with this algebra.

Keywords: operator monotone function, operator convex function, von Neumann algebra, $C^*$-algebra.

UDC: 517.986

Received: 23.06.2008


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:3, 7–11

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024