RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 8, Pages 30–35 (Mi ivm7115)

This article is cited in 1 paper

Real subalgebras in the matrix Lie algebra $M(2,\mathbf C)$

V. V. Gorbatsevich

Chair of Higher Mathematics, Russian State Technological University, Moscow, Russia

Abstract: In this paper we classify all real subalgebras (up to the conjugation) of dimensions 5, 6, and 7 in the Lie algebra of all complex matrices of the second order. In combination with recent results by F. A. Belykh, A. Yu. Borzakov, and A. V. Loboda (Russian Mathematics (Iz. VUZ) 51 (5), 11–23 (2007)) this gives a complete classification of all subalgebras in the specified matrix Lie algebra. The description is presented in two different forms, namely, in the framework of the theory of Lie algebras and their subalgebras, on one hand, and in the matrix form, on the other hand.

Keywords: Lie algebra, complex matrices, Lie subalgebra, matrix conjugation.

UDC: 512.554

Received: 12.10.2008


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:8, 24–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025