RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 9, Pages 90–93 (Mi ivm7133)

This article is cited in 1 paper

Brief communications

The maximal nonuniqueness classes of solutions to the Cauchy problem for linear equations

D. V. Turtin

Chair of Calculus and Applied Mathematics, Ivanovo State University, Ivanovo, Russia

Abstract: We study linear partial differential equations with increasing coefficients in a half-plane. We establish maximal nonuniqueness classes of solutions to the Cauchy problem for these equations. The proof is based on a new estimation method for a solution to the dual differential equation with a parameter.

Keywords: classes of uniqueness and nonuniqueness, Newton's diagram, Cauchy problem.

UDC: 517.955

Received: 02.12.2009


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:9, 77–79

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024