RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 12, Pages 58–66 (Mi ivm7161)

This article is cited in 4 papers

Decomposability of low 2-computably enumerable degrees and Turing jumps in the Ershov hierarchy

M. Kh. Faizrakhmanov

Chair of Algebra and Mathematical Logic, Kazan State University, Kazan, Russia

Abstract: In this paper we prove the following theorem: For every notation of constructive ordinal, there exists a low 2-computably enumerable degree which is not splittable into two lower 2-computably enumerable degrees, whose jumps belong to the $\Delta$-level of the Ersov hierarchy that corresponds to this notation.

Keywords: low degrees, 2-computably enumerable degrees, Ershov hierarchy, Turing jumps, constructive ordinals.

UDC: 510.53

Received: 08.04.2009


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:12, 51–58

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024