RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 1, Pages 72–84 (Mi ivm7173)

This article is cited in 6 papers

Reconstruction of solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the boundary

E. N. Sattorov

Chair of Mathematical Physics and Function Theory, Samarkand State University, Samarkand, Republic of Uzbekistan

Abstract: In this paper we consider the problem of reconstructing solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the domain boundary, i.e., the Cauchy problem. We construct an approximate solution to this problem with the help of the Carleman matrix method.

Keywords: generalized Moisil–Teodorescu system, ill-posed problems, regularized solution, approximate solution, Carleman matrix.

UDC: 517.946

Received: 13.05.2009


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:1, 62–73

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025