RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 3, Pages 41–49 (Mi ivm7244)

The Shilov boundary and the Gelfand spectrum of algebras of generalized analytic functions

A. R. Mirotin

Chair of Mathematical Analysis, F. Skorina Gomel State University, Gomel, Republic of Belarus

Abstract: Let $S$ be discrete abelian semigroup with unit and consellations. We show that the strong boundary and the Shilov boundary of the algebra of generalized analytic functions on the semigroup $\widehat S$ of semicharacters of $S$ are unions of some maximal subgroups of $\widehat S$. If $S$ does not contain nontrivial simple ideals, then both boundaries coincide with the character group of $S$. In this case, the Gelfand spectrum of the algebra under consideration has been calculated.

Keywords: Shilov boundary, Gelfand spectrum, uniform algebra, generalized analytic function.

UDC: 517.986

Received: 04.08.2009


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:3, 36–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024