RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 4, Pages 8–14 (Mi ivm7286)

An asymptotically optimal cubic spline

N. K. Bakirov

Chair of Mathematics, Ufa State Aviation Technical University, Ufa, Russia

Abstract: In this paper we consider the interpolation problem for a sufficiently smooth function defined on the segment $[0,1]$. The initial data are values of the mentioned function at given mesh nodes. We construct a cubic spline asymptotically optimal with respect to the growing number of nodes. For the constructed spline we estimate interpolation errors in the uniform and $L_2$ metrics.

Keywords: cubic spline, interpolation.

UDC: 519.652

Received: 20.10.2009


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:4, 5–11

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025