RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 5, Pages 35–43 (Mi ivm7301)

Approximate solution of one singular integro-differential equation

I. N. Meleshko, P. G. Lasy

Chair of Higher Mathematics № 2, Belarussian National Technical University, Minsk, Republic of Belarus

Abstract: In this paper we construct and theoretically justify a computational scheme for solving the Cauchy problem for a singular integro-differential equation of the first-order, where the integral over a segment of the real axis is understood in the sense of the Cauchy principal value. In addition, we study and solve approximately the integral equation with a special logarithmic kernel. We obtain uniform estimates for errors of approximate formulas. Orders of errors of approximate solutions are proved to be proportional to the order of the approximation error for the derivative of the density of the singular integral in the integro-differential equation.

Keywords: integro-differential equation, approximate solution, quadrature formula, logarithmic kernel, Prandtl equation.

UDC: 517.968+519.6

Received: 09.12.2009
Revised: 07.04.2010


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:5, 28–34

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025