RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 7, Pages 13–21 (Mi ivm7693)

This article is cited in 5 papers

Codistributive elements of the lattice of semigroup varieties

B. M. Vernikov

Chair of Algebra and Discrete Mathematics, Ural State University, Ekaterinburg, Russia

Abstract: We prove that if a semigroup variety is a codistributive element of the lattice SEM of all semigroup varieties then it either coincides with the variety of all semigroups or is a variety of semigroups with completely regular square. We completely classify strongly permutative varieties that are codistributive elements of SEM. We prove that a semigroup variety is a costandard element of the lattice SEM if and only if it is a neutral element of this lattice. In view of results obtained earlier, this gives a complete description of costandard elements of the lattice SEM.

Keywords: semigroup, variety, lattice, codistributive element, costandard element, neutral element.

UDC: 512.532

Received: 14.04.2010


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:7, 9–16

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024