RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 11, Pages 89–93 (Mi ivm8399)

This article is cited in 5 papers

Brief communications

On the word problem for the free Burnside semigroups satisfying $x^2=x^3$

A. N. Plyushchenko

Chair of Algebra and Discrete Mathematics, Ural Federal University, Ekaterinburg, Russia

Abstract: We study the word problem for free Burnside semigroups satisfying the identity $x^2=x^3$. For any $k>2$ we prove that the word problem for the $k$-generated free Burnside semigroup $B(2,1,k)$ can be reduced to the word problem for the two-generated semigroup $B(2,1,2)$. Moreover, if every element of $B(2,1,2)$ is a regular language, then every element of $B(2,1,k)$ also appears to be a regular language. Therefore, the semigroup $B(2,1,k)$ satisfies the Brzozowski conjecture if and only if so does $B(2,1,2)$.

Keywords: free Burnside semigroups, word problem, Brzozowski conjecture.

UDC: 512.531

Presented by the member of Editorial Board: L. N. Shevrin
Received: 03.05.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:11, 76–79

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024