RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 12, Pages 64–70 (Mi ivm8407)

This article is cited in 1 paper

Approximations of almost periodic functions by entire ones

M. F. Timana, Yu. Kh. Khasanovb

a Chair of Higher Mathematics, Dnepropetrovsk State Agrarian University, Dnepropetrovsk, Ukraine
b Chair of Information Science and Informartion Systems, Russian-Tajik Slavonic University, Dushanbe, Tajikistan

Abstract: In this paper we propose a new proof of the well-known theorem by S. N. Bernstein, according to which among entire functions which give on $(-\infty,\infty)$ the best uniform approximation of order $\sigma$ of periodic functions there exists a trigonometric polynomial whose order does not exceed $\sigma$. We also prove an analog of this Bernstein theorem and an analog of the Jackson theorem for uniform almost periodic functions with an arbitrary spectrum.

Keywords: almost periodic function, trigonometric polynomial, Fourier factors, uniform approximation, entire function of finite order, modulus of continuity.

UDC: 517.512

Received: 25.11.2010


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:12, 52–57

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024