RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 1, Pages 3–11 (Mi ivm8413)

This article is cited in 2 papers

Regular semiartinian rings

A. N. Abyzov

Chair of Algebra and Mathematical Logics, Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: We study the structure of rings over which every right module is an essential extension of a semisimple module by an injective one. A ring $R$ is called a right $\max$-ring if every nonzero right $R$-module has a maximal submodule. We describe normal regular semiartinian rings whose endomorphism ring of the minimal injective cogenerator is a $\max$-ring.

Keywords: semiartinian rings, $SI$-rings, injective module, $\max$-rings.

UDC: 512.55

Received: 24.01.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:1, 1–8

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025