RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 1, Pages 87–91 (Mi ivm8424)

This article is cited in 4 papers

Brief communications

The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them

E. M. Vechtomov, E. N. Lubyagina

Chair of Algebra and Discrete Mathematics, Vyatka State University of Humanities, Kirov, Russia

Abstract: We consider an idempotent semiring of continuous $[0,1]$-valued functions defined on a compact $X$ with the usual multiplication and addition $\max$. We prove the determinability of $X$ by the lattice of ideals and the lattice of congruencies of the indicated semiring.

Keywords: semiring, unit interval, compact, semiring of continuous functions, lattice of ideals, lattice of congruencies.

UDC: 512.556

Presented by the member of Editorial Board: M. M. Arslanov
Received: 13.05.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:1, 79–82

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025