RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 2, Pages 86–91 (Mi ivm8437)

This article is cited in 28 papers

Brief communications

Block projection operators in normed solid spaces of measurable operators

A. M. Bikchentaev

Research Institute of Mathematics and Mechanics, Kazan (Volga region) Federal University, Kazan, Russia

Abstract: We prove a Hermitian analog of the well-known operator triangle inequality for von Neumann algebras. In the semifinite case we show that a block projection operator is a linear positive contraction on a wide class of solid spaces of Segal measurable operators. We describe some applications of the obtained results.

Keywords: von Neumann algebra, triangle inequality, normal semifinite trace, solid space of measurable operators, block projection operator.

UDC: 517.983+517.986

Received: 19.09.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:2, 75–79

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024