RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 4, Pages 24–32 (Mi ivm8591)

This article is cited in 1 paper

A rearrangement formula for a singular Cauchy–Szegö integral in a ball from $\mathbb C^n$

A. S. Katsunovaa, A. M. Kytmanovb

a Chair of Applied Mathematics and Computer Security, Siberian Federal University, Institute of Space and Information Technologies, Krasnoyarsk, Russia
b Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: We obtain an analog of the Poincaré–Bertrand formula for a singular Cauchy–Szegö integral in a multidimensional ball. We understand the principal value of the integral in the Cauchy sense. The obtained formula differs from that of Poincaré–Bertrand for the Cauchy integral in a complex plane.

Keywords: Cauchy–Szegö integral, principal value of integral in Cauchy sense, rearrangement formula for iterated integrals.

UDC: 517.552

Received: 06.04.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:4, 19–26

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025