RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 4, Pages 46–52 (Mi ivm8593)

One sufficient condition for Hamiltonian graphs involving distances

Kewen Zhaoa, Lin Yuea, Zhang Pingb

a Department of Mathematics, Qiongzhou University, Hainan, P. R. China
b Department of Mathematics and Statistics, Western Michigan University, Michigan, USA

Abstract: Let $G$ be a 2-connected graph of order $n$ such that $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$. Then, as was proved in 1990 by G. T. Chen, $G$ is Hamiltonian. In this paper we introduce one more condition and prove that if $G$ is a 2-connected graph of order $n$ and $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$ such that $d(x,y)=2$, then $G$ is Hamiltonian.

Keywords: Hamiltonian graph, Ore condition, neighborhood union condition, Chen condition, new sufficient condition.

UDC: 517.175

Received: 29.10.2010


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:4, 38–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024