RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 6, Pages 67–70 (Mi ivm8714)

This article is cited in 6 papers

Brief communications

On the A. M. Bikchentaev conjecture

F. A. Sukochev

School of Mathematics and Statistics, University of New South Wales, Sydney, Australia

Abstract: In 1998 A. M. Bikchentaev conjectured that for positive $\tau$-measurable operators $a$ and $b$ affiliated with a semifinite von Neumann algebra, the operator $b^{1/2}ab^{1/2}$ is submajorized by the operator $ab$ in the sense of Hardy–Littlewood. We prove this conjecture in its full generality and obtain a number of consequences for operator ideals, Golden–Thompson inequalities, and singular traces.

Keywords: von Neumann algebra, normal trace, $\tau$-measurable operator, Hardy–Littlewood submajorization, Golden–Thompson inequality, singular trace.

UDC: 517.983+517.986

Presented by the member of Editorial Board: A. M. Bikchentaev
Received: 05.12.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:6, 57–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025