RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 7, Pages 45–49 (Mi ivm8719)

This article is cited in 2 papers

Brief communications

Isoperimetric inequality for torsional rigidity in multidimensional domains

F. G. Avkhadiev

Chair of Function Theory and Applications, Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: We consider the Saint Venant functional $P$ for the torsional rigidity in arbitrary plane and space domains. Our main result is the following sharp estimate: $P\leq(4/n)m$, where $n$ is the dimension of domains and $m$ is the harmonic mean of inertial moments of a domain with respect to coordinate planes. Extremal domains are some ellipsoids. Hence, we obtain a generalization of the isoperimetric inequality, proved by E. Nicolay for the torsional rigidity of simply connected planar domains.

Keywords: isoperimetric inequality, torsional rigidity, inertial moments.

UDC: 517.54

Received: 06.02.2012


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:7, 39–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025