RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2013 Number 7, Pages 77–89 (Mi ivm8812)

This article is cited in 3 papers

Lebesgue functions corresponding to a family of Lagrange interpolation polynomials

I. A. Shakirov

Chair of Mathematics and its Teaching Principles, Naberezhnye Chelny Institute of Social Pedagogical Technologies and Resources, 28 Nizametdinov str., Naberezhnye Chelny, 423806 Russia

Abstract: In this paper we obtain various explicit forms of the Lebesgue function corresponding to a family of Lagrange interpolation polynomials defined at an even number of nodes. We study these forms by using the derivatives up to the second order inclusive. We estimate exact values of Lebesgue constants for this family from below and above in terms of known parameters. In a particular case we obtain new simple formulas for calculating these estimates.

Keywords: Lagrange interpolation polynomials, Lebesgue functions and constants, generalized Dirichlet kernel.

UDC: 519.65

Received: 26.01.2012
Revised: 12.09.2012


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2013, 57:7, 66–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024