RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2014 Number 1, Pages 61–70 (Mi ivm8863)

This article is cited in 9 papers

The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice

T. Kh. Rasulov, R. T. Mukhitdinov

Chair of Mathematical Physics and Analysis, Bukhara State University, 11 M. Ikbol str., Bukhara, 200100 Republic of Uzbekistan

Abstract: We consider a model operator $H$ associated with a system of three particles on a lattice interacting via nonlocal pair potentials. Under some natural conditions on the parameters specifying this model operator $H$, we prove the finiteness of its discrete spectrum.

Keywords: discrete spectrum, nonlocal potential, continuity in the uniform operator topology, Hilbert–Schmidt class, Weinberg equation.

UDC: 517.984

Received: 11.09.2012


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, 58:1, 52–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024