RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2014 Number 7, Pages 30–48 (Mi ivm8909)

This article is cited in 6 papers

On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes

S. B. Vakarchuka, M. Sh. Shabozovb, M. R. Langarshoevb

a Chair of Information Science and Mathematical Methods in Economics, Alfred Nobel University, 18 Naberezhnaya Lenina str., Dnepropetrovsk, 49000 Ukraine
b Institute of Mathematics, Academy of Sciences, Republic Tajikistan, 299/1 Aini str., Dushanbe, 734063 Republic of Tajikistan

Abstract: We consider some extremal problems of approximation theory of functions at the whole real axis $\mathbb R$ by entire functions of the exponential type. In particular, we find the exact values of the mean $\nu$-widths of classes of functions, defined by the moduli of continuity of $m$th order $\omega_m$ and majorants $\Psi$ satisfying the special type of restriction.

Keywords: best approximation, entire function of exponential type, modulus of continuity, mean $\nu$-width, majorant.

UDC: 517.5

Received: 18.01.2013


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, 58:7, 25–41

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025