RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2014 Number 7, Pages 63–71 (Mi ivm8912)

This article is cited in 11 papers

On the Dirichlet problem for hyperbolic equations of the third order

O. S. Zikirov

Chair of Differential Equations, M. Ulugbek National University of Uzbekistan, 4 Universitetskaya str., Tashkent, 100174 Republic of Uzbekistan

Abstract: We consider the Dirichlet problem for linear hyperbolic equations of the third order. We prove the existence and uniqueness of classical solution with the use of an energy inequality and Riemann's method. We reveal the effect of influence of coefficients at minor derivatives on the well-posedness of the Dirichlet problem.

Keywords: hyperbolic equation, boundary-value problem, Dirichlet problem, Goursat problem, Riemann's function, Fredholm and Volterra equations.

UDC: 517.956

Received: 07.01.2013


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2013, 58:7, 53–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025