RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2014 Number 8, Pages 53–59 (Mi ivm8918)

This article is cited in 2 papers

On a distrubution of semiprime numbers

Sh. T. Ishmukhametov, F. F. Sharifullina

Chair of System Analysis and Information Technologies, Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: A semiprime is a natural number which is the product of two (possibly equal) prime numbers. Let $y$ be a natural number and $g(y)$ be the probability for a number $y$ to be semiprime. In this paper we derive an asymptotic formula for counting $g(y)$ for large values of $y$ and evaluate its correctness for different $y$. We also introduce a notion of strong semiprime as a product of two primes of large dimension and investigate a distribution of strong semiprimes.

Keywords: semiprime integer, strong semiprime, distribution of semiprimes, factorization of integers, the RSA ciphering method.

UDC: 519.711

Received: 31.01.2013


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, 58:8, 43–48

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024