RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2014 Number 12, Pages 37–47 (Mi ivm8956)

This article is cited in 6 papers

Conformal mapping onto numerable polygon with double symmetry

I. A. Kolesnikov, L. S. Kopaneva

Chair of Mathematical Analysis, Tomsk State University, 36 Lenin Ave., Tomsk, 634050 Russia

Abstract: We consider simply connected domains of half-plane type with the symmetry of transfer along the real axis by $2\pi$ and symmetry with respect to vertical straight line $w=\pi+iv$, $v\in\mathbb R$, with a boundary consisting of straight line segments. Conformal mapping of the half-plane onto such domains are represented by integral of Schwarz–Christoffel integral type. The proof of the result is based on Riemann–Schwarz principle of symmetry and Schwarz–Christoffel classical formula. We found several mappings on specifically defined domain.

Keywords: numerable polygon, conformal mapping, symmetry of transfer, elliptic integrals.

UDC: 517.546

Received: 11.06.2013


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, 58:12, 32–40

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024