RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2015 Number 2, Pages 35–44 (Mi ivm8972)

On the maximal finite-dimensional Lie algebras with given nilradical

V. V. Gorbatsevich

Chair of Higher Mathematics, Russian State Technological University, 3 Orshanskaya str., Moscow, 121552 Russia

Abstract: We study the set of finite-dimensional Lie algebras with fixed nilradical (in the capacity of which any nilpotent Lie algebra may serve). We prove an exact estimate for dimensions of Lie algebras from this set. We also show that there may exist several Lie algebras in this set, possessing the maximal dimension. Proofs are based on a concept of algebraic splitting for finite-dimensional Lie algebras.

Keywords: Lie algebra, nilradical, algebraic splitting of the Lie algebra, Chevalley's decomposition.

UDC: 512.554

Received: 26.08.2013


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, 59:2, 29–35

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025