RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2016 Number 5, Pages 22–40 (Mi ivm9110)

This article is cited in 4 papers

Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a polynomial identity

M. S. Eryashkin

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We consider an action of a finite-dimensional Hopf algebra $H$ on a PI-algebra. We prove that an $H$-semiprime $H$-module algebra $A$ has a Frobenius artinian classical ring of quotients $Q$ if $A$ has a finite set of $H$-prime ideals with zero intersection. The ring of quotients $Q$ is an $H$-semisimple $H$-module algebra and finitely generated module over the subalgebra of central invariants. Moreover, if the algebra $A$ is projective module of constant rank over its center then $A$ is integral over the subalgebra of central invariants.

Keywords: Hopf algebras, invariant theory, PI-algebras, rings of quotients.

UDC: 512.667

Received: 30.09.2014


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, 60:5, 18–34

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025