RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2016 Number 5, Pages 70–74 (Mi ivm9113)

This article is cited in 7 papers

Brief communications

On operator monotone and operator convex functions

A. M. Bikchentaev

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We establish monotonicity and convexity criteria for a continuous function $f\colon\mathbb R^+\to\mathbb R$ with respect to any $C^*$-algebra. We obtain some estimates for noncompactness measure of $W^*$-algebra elements products differences. We also give a commutativity criterion for a positive $\tau$-measurable operator and a positive operator from a von Neumann algebra.

Keywords: Hilbert space, von Neumann algebra, $C^*$-algebra, $W^*$-algebra, operator monotone function, operator convex function, measure of noncompactness, trace, measurable operator, commutativity of operators.

UDC: 517.983+517.986

Received: 13.11.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, 60:5, 61–65

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024