RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2016 Number 5, Pages 80–85 (Mi ivm9115)

Brief communications

Transversal Lie jets and holomorphic geometric objects on transverse bundles

S. K. Zubkova, V. V. Shurygin

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: Two holomorphic fields of geometric objects on a transverse Weil bundle are called equivalent if there exists a holomorphic diffeomorphism of this bundle onto itself which induces the identity transformation of the base manifold and maps one of these fields into the other. In terms of transverse Lie jets, we establish necessary and sufficient conditions for a holomorphic field of geometric objects on a transverse Weil bundle to be equivalent to the prolongation of a field of foliated geometric objects given on the base manifold. As an example, we consider a holomorphic linear connection on a transverse bundle.

Keywords: Weil algebra, geometric object, Lie jet, Weil bundle, transverse bundle.

UDC: 514.76

Received: 15.12.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, 60:5, 70–74

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024