RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 1, Pages 12–16 (Mi ivm9192)

This article is cited in 1 paper

Jump boundary-value problem on a contour with elongate singularities

B. A. Katsa, S. R. Mironovab, A. Yu. Pogodinac

a Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
b Kazan National Research Technical University named after A.N. Tupolev, 10 K. Marks str., Kazan, 420111 Russia
c Saratov State University, 83 Astrakhanskaya str., Saratov, 410012 Russia

Abstract: Let $\Gamma$ be an image of the interval $(0,1)$ under one-to-one continuous mapping $\phi: (0,1)\to \mathbb{C}$. If the difference of closure of $\Gamma$ and the very set $\Gamma$ contains more than one point, then we say that $\Gamma$ is a contour with elongate singularities. We study the jump boundary-value problem for analytical functions on that contours and obtain new solvability criteria for it.

Keywords: jump problem, contour with singularities.

UDC: 517.544

Received: 07.05.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:1, 10–13

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024