RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 6, Pages 9–17 (Mi ivm9244)

This article is cited in 1 paper

On $MP$-closed saturated formations of finite groups

A. F. Vasil'eva, T. I. Vasil'evab, D. N. Simonenkob

a F. Scorina Gomel State University, 104 Sovetskaya str., Gomel, 246019 Republic of Belarus
b Belarusian State University of Transport, 34 Kirova str., Gomel, 246653 Republic of Belarus

Abstract: A class of groups $\mathfrak{F}$ is called $MP$-closed, if it contains every group $G=AB$ such that $\mathfrak{F}$-subgroup $A$ permutes with every subgroup of $B$ and $\mathfrak{F}$-subgroup $B$ permutes with every subgroup of $A$. We prove that the formation $\mathfrak{F}$ containing the class of all supersoluble groups is $MP$-closed if and only if the formation $F(p)$ is $MP$-closed for all prime $p$, where $F$ is maximal integrated local screen of $\mathfrak{F}$. In particular, we prove that the formation of all groups with supersoluble Schmidt subgroups is $MP$-closed.

Keywords: finite group, product of mutually permutable subgroups, saturated formation, $MP$-closed formation, local screen.

UDC: 512.542

Received: 16.12.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:6, 6–12

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025