RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 6, Pages 76–82 (Mi ivm9251)

This article is cited in 4 papers

Products of $\mathrm{F}^*(G)$-subnormal subgroups of finite groups

V. I. Murashka

Francisk Skorina Gomel State University, 104 Sovetskaya str., Gomel, 246019 Republic of Belarus

Abstract: A subgroup $H$ of a finite group $G$ is called $\mathrm{F}^*(G)$-subnormal if $H$ is subnormal in $H\mathrm{F}^*(G)$. We show that if a group $G$ is a product of two $\mathrm{F}^*(G)$-subnormal quasinilpotent subgroups, then $G$ is quasinilpotent. We also study groups $G=AB$, where $A$ is a nilpotent $\mathrm{F}^*(G)$-subnormal subgroup and $B$ is a $\mathrm{F}^*(G)$-subnormal supersoluble subgroup. Particularly, we show that such groups $G$ are soluble.

Keywords: finite group, $\mathrm{F}^*(G)$-subnormal subgroup, nilpotent group, supersoluble group, quasinilpotent group, product of subgroups.

UDC: 512.542

Received: 14.12.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:6, 66–71

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024