RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 7, Pages 3–13 (Mi ivm9253)

Perturbation of Hill operator by narrow potentials

A. R. Bikmetova, I. Kh. Khusnullinb

a Ufa Scientific Center of Russian Academy of Sciences, 71 Oktyabrya Ave., Ufa, 450054 Russia
b M. Akmulla Bashkir State Pedagogical University, 3a Oktyabrskoi Revolutsii str., Ufa, 450000 Russia

Abstract: We consider a perturbation of periodic operator of the second order on the axis, which is a special case of the Hill operator. Perturbation is realized by a complex sum of two complex-valued potentials with compact supports depending on two small parameters, one of which describes the length of the carriers of potentials and the reciprocal of the second one corresponds to the maximum values of potential modules. We obtain the sufficient condition, under which from the edges of non-degenerate lacunas of continuous spectrum their eigenvalues arise, and construct asymptotics. We adduce a sufficient condition under which the eigenvalues do not arise.

Keywords: Hill operator, perturbation, asymptotics.

UDC: 517.928

Received: 11.03.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:7, 1–10

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024