RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 7, Pages 74–83 (Mi ivm9261)

Univalent conformal mappings by generalized Christoffel–Schwartz integral onto polygonal domains with countable set of vertices

E. N. Khasanova

Kazan State University of Architecture and Civil Engineering, 1 Zelyonaya str., Kazan, 420043 Russia

Abstract: We obtain a formula for the conformal mapping of the upper half-plane onto a polygonal domain. This structural formula generalizes the Schwartz–Christoffel equation and is written with the use of partial solution to the Hilbert boundary-value problem with a countable set of points of discontinuity of the coefficients and with turbulence at infinity of logarithmic type. We also prove closedness and existence of univalent mappings among given ones.

Keywords: Schwartz–Christoffel equation, conformal mapping, Hilbert boundary-value problem, univalence.

UDC: 517.546

Received: 28.01.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:7, 64–72

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024