RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 8, Pages 80–85 (Mi ivm9271)

This article is cited in 2 papers

Brief communications

Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces

J. R. Agachev, M. Yu. Pershagin

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: In this paper we investigate the general boundary-value problem for linear integro-differential equations, specified on a segment of the number line where the order of the internal differential operators is of higher order than that of the corresponding exterior differential operator. We prove well-posedness of this problem in the Hadamard sense in new pair of non-weighted Sobolev spaces.

Keywords: Sobolev space, integro-differential equation, general boundary-value problem, well-posedness.

UDC: 517.968

Received: 17.03.2017


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:8, 71–75

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024