RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 10, Pages 8–14 (Mi ivm9285)

This article is cited in 3 papers

Partition of a unity on infinite-dimensional manifold of the Lipschitz class $\mathrm{Lip}^k$

Z. D. Al-Nafie

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We prove a critrion of $\mathrm{Lip}^k$-paracompactness of infinite-dimensional manifold $M$ modeled in nonnormable topological Fréchet vector space $F$. We establish that for $\mathrm{Lip}^k$-paracompactness it is necessary and sufficcient for the space of models $F$ to be paracompact and $\mathrm{Lip}^k$-normal. We prove suffcient condition of existence of $\mathrm{Lip}^k$-partition of unity on a manifold of class $\mathrm{Lip}^k$.

Keywords: infinite-dimensional manifold, paracompactness, partition of unity, convenient topological vector spaces, nonnormable Fréchet spaces.

UDC: 517.988

Received: 23.06.2016
Revised: 05.12.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:10, 5–10

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024