RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 10, Pages 89–93 (Mi ivm9294)

Brief communications

Cocyclic $n$-groups

N. A. Shchuchkin

Volgograd State Socio-Pedagogical University, 27 Lenin Ave., Volgograg, 400131 Russia

Abstract: We describe all cocyclic $n$-groups and the structure of $(n, 2)$-rings of endomorphisms of cocyclic $n$-groups. We prove that a cocyclic $n$-group is defined uniquely by its $(n, 2)$-ring of endomorphisms.

Keywords: abelian $n$-group, cocyclic $n$-group, $(n,2)$-ring of endomorphisms.

UDC: 512.548

Received: 06.05.2015
Revised: 25.02.2017


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:10, 77–81

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025