RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 11, Pages 30–38 (Mi ivm9298)

This article is cited in 8 papers

Calculation of Bezout's coefficients for $k$-ary algorithm of greatest common divisor

Sh. T. Ishmukhametova, B. G. Mubarakova, Kamal Maad Al-Annib

a Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
b University of Strasbourg, 4 Rue Blaise Pascal, Strasbourg, 67081 France

Abstract: Bezout's equation is a representation of the greatest common divisor $d$ of two integers $A$ and $B$ as a linear combination $Ax+By=d$, where $x$ and $y$ are integers called Bezout's coefficients. Usually Bezout's coefficients are caclulated using the extended version of the classical Euclidian algorithm.
We elaborate a new algorithm for calculating Bezout's coefficients based on the $k$-ary GCD algorithm. This problem has numerous applications in the number theory and cryptography, for example, for calculation of multiplicative inverse elements in modular arithmetic.

Keywords: Euclidian algorithm, extended Euclidian algorithm, $k$-ary GCD algorithm, calculation of inverse elements by module.

UDC: 511.1

Received: 24.06.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:11, 26–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025