RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 11, Pages 46–59 (Mi ivm9300)

On zeros of functions rapidly growing in generalized Bergman spaces

E. A. Sevast'yanov

National Research Nuclear University (MIFI), 31 Kashirskoe Highway, Moscow, 115409 Russia

Abstract: The zero-sets of rapidly growing functions which belong to the Bergman spaces and more general spaces of analytic functions with mixed norms have no clear-cut description. A range of exact necessary conditions on the moduli of zeros of such functions presented in the paper show the impossibility to obtain such a description in more or less clear geometrical terms.

Keywords: Bergman spaces, zeros of analytic functions.

UDC: 517.53

Received: 21.06.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:11, 40–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025