RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2018 Number 1, Pages 3–9 (Mi ivm9313)

This article is cited in 1 paper

On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems

R. Boukoucha

University of Bejaia, 06000 Bejaia, Algeria

Abstract: For two-dimensional Kolmogorov system, where $R\left( x,y\right)$, $S\left( x,y\right)$, $P\left( x,y\right)$, $Q\left( x,y\right)$, $M\left( x,y\right)$, and $N\left( x,y\right) $ are homogeneous polynomials of degrees $m$, $a$, $n$, $n$, $b$, and $b$, respectively, we obtain an explicit expression of the first integral and prove the non-existence of periodic orbits and of limit cycles. We adduce an example of applicability of our result.

Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.

Received: 08.08.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:1, 1–6

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024