RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2018 Number 1, Pages 57–66 (Mi ivm9319)

Generalized solutions of boundary-value problems for quasilinear elliptic equation on noncompact Riemannian manifolds

E. A. Mazepa

Volgograd State University, 100 Universitetskii Ave., Volgograd, 400062 Russia

Abstract: The paper is devoted to the development of approximative approach to the construction of solutions to boundary-value problems for quasilinear elliptic equations on arbitrary noncompact Riemannian manifolds. Methods of studies essentially rely on an approach based on the introduction of equivalence classes of functions on Riemannian manifold (papers of E. Mazepa and S. Korol'kov). It also summarizes the methodology for constructing a generalized solution to the Dirichlet problem for linear elliptic equations in bounded domains of $\mathbb{R}^n$ (papers of M. Keldysh and E. Landis).

Keywords: quasilinear elliptic equations, noncompact Riemannian manifolds, boundary-value problem, approximation approach, generalized solutions.

UDC: 517.95

Received: 04.10.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:1, 50–57

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024