RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2018 Number 2, Pages 32–38 (Mi ivm9328)

This article is cited in 1 paper

Vector hamiltonians in Nambu mechanics

V. N. Dumachev

Voronezh Institute of the Ministry of Internal Affairs of Russia, 53 Patriotov Ave., Voronezh, 394065 Russia

Abstract: We give a generalization of the Nambu mechanics based on vector hamiltonians theory. It is shown that any divergence-free phase flow in $\mathbb{R}^n$ can be represented as a generalized Nambu mechanics with $n-1$ integral invariant. For the case when the phase flow in $\mathbb{R}^ n$ has $n-3$ or less first integrals, we introduce the Cartan concept of mechanics. We give an example the fifth integral invariant of Euler top.

Keywords: first integrals, integral invariants, splitting cohomology.

UDC: 514.745

Received: 08.11.2016
Revised: 01.03.2017


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:2, 28–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024